
the identification of the TPC and the study of the quality of the estimates obtained enable 
obtaining more accurate and when necessary reliable information on the thermophysical proper- 
ties of new and little-studied materials, which is especially important for the optimization 
and intensification of technological heat- and mass-transfer processes in metallurgy and ma- 
chine building. The studies carried out enable posing the question of the simultaneous iden- 
tification of several TPC and proceeding to combined IPH, in the course of whose solution the 
TPC and other conditions of uniqueness, for example, the boundary conditions, geometrical pa- 
rameters, initial temperature distribution, and so on, are determined in parallel. 

NOTATION 

%, coefficient of thermal conductivity; CV, specific volume heat capacity; Tm, tempera- 
ture of the medium; T b and Tin , boundary and internal temperatues; ~, heat-transfer coeffi- 
cient) T, time; AT, time step; h, spatial step; q, heat flux, o, rms deviation; and IIAFH , 
total difference between the measured and predicted temperatures. 
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NONLINEAR INVERSE PROBLEM OF RECONSTRUCTING TRANSPORT COEFFICIENTS 

P. M. Kolesnikov and T. G. Protod'yakonova UDC 536.24.01 

The inverse coefficient problem for the quasilinear heat-conduction equation is 
solved numerically. 

The experimental determination of thermophysical parameters is usually based on the so- 
lution of direct problems in the theory of heat conduction, when for fixed properties of the 
medium the temperature field is found with the help of the theory, and methods for confirm- 
ing experimentally the theoretical results are created based on the theoretical representa- 
tions. At high temperatures, however, experimental measurements are difficult to perform, 
so that the thermophysical properties of the materials ape determined using the values of the 
temperature distribution measured far from the contact surface with the high-temperature flow. 
These problems, called inverse problems of transfer theory, have become very important in re- 
cent years in connection with the extensive possibilities presented by modern computational 
methods together with the extensive use of computers for rapid determination of the thermo- 
physical parameters. 

In most cases, linear mathematical models are used to solve inverse problems of deter- 
mining the thermophysical parameters. In a wide range of temperature variation, however, the 
temperature dependence of the thermophysical parameters cannot be ignored, so that these meth- 
ods obviously suffer from substantial errors. It is natural to base the experimental methods 
of determining thermophysical parameters on nonlinear mathematical models [I, 2]. 

In this work we study the problem of determining the nonlinear thermophysical character- 
istics, the heat capacity, andthe coefficient of thermal conductivity for metal cylindrical 
samples interacting with a high temperature flow by the method of conjugate gradients. 
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We shall write down the mathematical problem in the form of the following system of 
equations [I, 2, 3]: 

a T  1 a / x ~ ( T )  aT ~ aT 
c (T) . at x ~ ~-x  ~ + bt(T) ~ + [,(T), l o < x < / 1 ,  l > O, (1) 

T (x, o) =: To, lo < x ~ q, (2) 

OT 
A1T + A2%(T) ~ = A3 (T), x --- 10, t > 0 ,  (3) 

0x 

B~T - -  B2L (T) a T  = B~ (T), x = I~, t > 0 (4) 
Ox 

and additional conditions 

T (xi, t ) =  % (t), i = 1 . . . . .  m, 

where  r ~(T), [(T), A~(T), B a(T ) a r e  known f u n c t i o n s .  The f u n c t i o n s  c(T)  and l (T)  were  ap -  
p r o x i m a t e d  by expressions of the form 

L ' 

c(T)---- ciT ki, L(T)= ~ ~'tT kz 
i = 0  l = 0  

We define the parameters ci, %i, written for convenience in the form of the components of a 
vector a = (Co, ..., c I, %o, ..., %L ), with the help of the minimization of the discrepancy 
functional [4-6]: 

m tl 

J (~) ---- ~ .[ ~, (t)(T(x~, t) - -  % (t))2dt, 
~=t  0 

characterizing the matching of the measured and predicted values of the temperatures, where 
8i(t) are given positive functions, determining the degree of reliability of the additional 
information. These functions are chosen to be different depending on the error in the ex- 
periment. 

We minimized the functional J(a) by the method of conjugate gradients. We write down 
the components of the gradient of the functional J(a) in terms of the values of the sensi- 
tivity function ~j=OT/Oaj: 

O__~J _= 2 I ~' (t)(T (x,, t) % (t)) *j (x~i, 
Oaj ~= t 6 

t) dr. (5) 

The functions ~j(x, t), j = i, ..., 

c" "(T) O~;j _ 
at 

I + L + 2 are the solutions of the systems of equations 

1 0 

F 7 a~ aT ~ *j + - -  

1 a (x. az a T )  
+ x n %-7 oa -. 

aT ,,~ -t Ox aT at 

Oc OT 
- - ,  l o < x < l  x, t > O  

Oaj at 

(6) 

with the following conditions: 

initial 

(7) 
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and boundary 

A .~ A~ O2 OT ) ~ + AeZ.(T) O~?~ O~ OT OAn 
OT Ox ~ + A~ - -  _ lo, t > O, , Oa: Ox OT *:' x = (8) 

( B , - -  B~ O~ OT ) O~ .B~ OX OT 
0~- ~-x r  Be)~ (T) Ox Oa~ Ox - -  

OBa 
OT ~ '  x =  l .  t > 0 . .  (9) 

The problem is solved numerically. 
proximating them with an error of o(v+h '2) , are 

1 (x'Z~,T7)2 + PjT~x + [~, c~T g ~-- x ~ 

T o = To, 

AlTo + A~ (s --  0,5h (coT E o - -  [o)/n')/Mo = Aa,o, 

B1T N -- B 2 (~N_I /2T~,,N -~- 0,5 h (C NT ~ N --- [ N))/MN = Ba, N' 

1 (xn O~ TT*j ) + @i -i-= xl~" (x"Xr )2 + ~t,:~ + - 7  OT ; 

" O T  * - -  OT OT Ot *J + x " - - r r  . x Oaj ; Oaj 

The difference analogs of the equations (i)-(9), ap- 

(i0) 

(Ii) 

(12)  

(13) 

- - -  T/-, (14) 

8~ 
A1 + As - ~  T~,o 

~ = O, (15)  

OA~ ", & 
OT ) ~:'~ ~a~ T., o + a~)h:~ ~sx,o : O, (16)  

B, - -  B2 8)~ 8Ba \ B 8L T_ - - ~  rT,.-,,,, o r  ) r  os x , . -  B~._,/~.  :~,. = o, (17) 

K 

i : l  k = l  

(18) 

aJ 2 k ~_ ...... ~ (Tn~ ~) r % Oaj i:~ k=~. (19) 

where 

n'== I n +  I, lo=0, 
[ I ,  lo=/= O, , n~: n ih  = & ,  "~K = ti; 

[ 1 - -  0.5 h l~o/~,o (1 + n), lo = O; 
Mo 

1 -  O,5h~o/)~o - -  0.5hn/7o, I o =/= O; 

M n -- 1 + 0.5 h ~N/~m+ 0.5 hnfl,. 

To determine the parameters co, �9 .., Cl, Xo, "'', XL, the components of the vector ~, 
using the method of conjugate gradients we shall construct the following iteration process: 

$ 

if the value of 5, is known, then, by solving the difference equations (10)-(17), we deter- 
(s) (s~.k ~k.. (s) (s) 

mine ,, iz ' and in terms of them we calculate ] and grad ] from the formulas (18) and (19). 
We shall seek the next (s + l)-st approximation in the form 
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TABLE i. Predicted T(xi, t) and Experimental ~(x,, t)._ Tempera- 
tures at Different Times t and at Different Coordinates x i 

t ,  c ~a(t) T(&,  t) ~2(t) T(x~, t) q)8(f) T(xn, t) 

0 ,05  
0,10 
0,15 
0,20 
0 , 2 5  
0,3 
0,35 
0,4 
0 ,45  
0,5 
0,55 
0,6 
0,65 
0,7 
0,75 
0,8 
0,85 
0,9 
0,95  
1,0 

20,32 
21,19 
22,75 
25,03 
28,05 
31,78 
36,17 
41,19 
46,77 
52,87 
59,44 
66,43 
73,81 
81,54 
89,58 
97,91 

106,50 
115,33 
124,38 
133,62 

20,32 
21,19 
22,74 
25,03 
28,05 
31,78 
36,17 
41,19 
46,77 
52,87 
59,44 
66,43 
73,8t 
81,54 
89,58 
97,91 

106,50 
115,33 
124,38 
133,62 

20,01 
20,03 
20,09 
20,22 
20,43 
20,74 
21,19 
21,79 
22,54 
23,47 
24,59 
25,90 
27,40 
29,09 
30,98 
33,06 
35,34 
37,80 
40,44 
43,26 

i 

20,006 
20,0297 
20,084 
20,183 
20,346 
20,59 
20,934 
21,397 
22,006 
22,779 
23,74t 
.24,916 
26,329 
29,003 
29,964 
32,234 
34,835 
37,798 
41,11 
44,82 

20,00 
20,00 
20,00 
20,01 
20,02 
20,04 
20,07 
20,12 
20,19 
2O ,28 
20,41 
20,57 
20,78 
21,04 
21,34 
21,71 
22,14 
22,63 
23,18 
23,81 

20,00 
20,00 
20,002 
20,005 
20,012 
20,023 
20,04 
20,067 
20,I0 
20,156 
20,226 
20,318 
20,437 
20,59 
20,78t 
21,019 
21,313 
21,672 
22,106 
22,63 

• • t • ]  . . . . . . . . .  

y / / / / / A  [ j Ax ! 

Fig. i. Diagram of the arrangement of thermo- 
couples along the probe: Rx = 0.004; R= = 
0.003; Lx = 0.015; La = 0.04; x, = 0.005; Ax= = 
x2--xx = 0 . 0 1 ;  hxs  = x a ' - x 2  = 0 . 0 1 ;  hx4 = x, , -"xa = 

0 . 0 1 .  

(s+_l) (__s (s) (2.) 

where 

the descent parameter 

(s) (s) (s) (s--l) 
p =grad J --[3 p ; 

(s) 
is chosen so that 

(s) 
(2) [ grad J 12 . (o) (0) 

[ ~  ~ -  ~ (s--i) ' P = grad J ; 
]grad J [2 

(s+~) (21 
J( a ) < J(a ), 

The iteration process terminates when the condition J < 8,. where 8 is a fixed error, 
is satisfied. 

To check the efficiency of the proposed algorithm and the corresponding program, we car- 
ried out a control calculation. From the solution of the direct problem with given thermo- 
physical coefficients 

c (T) = co + c l T  = 3800 + 2T, )~(T) = ~o + ~1T = 0.35---0,00001 T, 

( T ) = O ,  f ( T ) = O ,  

with the boundary conditions 

Z (T) OT/Ox = - -  10  0 0 0  V 4 ~  at x = 0 ,  
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TABLE 2. 
al ~ Temperatures 

t ,  SP-.C 

0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1,0 
1,1 
1,2 
1,3 
1,4 
1,5 
1,6 
1,7 
1,8 
1,9 
2,0 

(~(t) 

21,45 
36,41 
50,75 
63,86 
75,63 
85,80 
95,10 
04,54 
12,75 
20,47 
27,50 
34,75 
41,44 
47,971 
al,I5I 
6o,28i 

,8Ol 
71,82 I 
77.34 
82,45 

Y 

A: 
o qs ~ ~ t 

Fig. 2. Distribution 0f the tempera- 
ture T as a function of time: i) x = 
0.005; 2) 0.015; 3) 0.025; 4) 0.035. 
T; ~ t, sec. 

Comparison of the Refined Predicted T and Experiment- 

17.931 18,091 18.091 t7,931 17,94 
18.291 19,05 19.051 17.931 17,99 
19.8tl 21,05 2t.041 17.931 18,17 
23,20t 23,991 33.981 18.52I 18,53 
26.67J 27,671 27.651 19.11t 19,13 

31,82 2o.28I I9,94 
36.181 36,26 36:241 20.861 21,10 
40.4~51 40,90 40.881 22.151 22,46 
45.421 45,65 45.631 23.781 24,04 
50.421 50,43 50.421 25,521 25,81 
55.371 55,20 55.181 27.481 27,74 
59.951 59,93 59.92I 29,551 29,81 
64.631 64,631 54.021 31,~51 31,99 
69.091 69,271 69.27J 34.I31 34,27 
72.871 73,851 73.861 36.961 36,62 
77.951 78,371 78.39t 39.351 39,02 
82.681 82,821 82.83t 40.931 41,45 
85.841 87,201 87.221 43.631 43,92 
90.471 9I ,52 91.551 47.091 46,41 
94.581 95,76 95.801 49.a51 48,91 

T(xs,t) 

17,93 
17,99 
18,17 
18,53 
19,12 
I9,98 
21,09 
22,44 
24,02 
25,79 
27,72 
29,79 
31,97 
34,25 
36,59 
38,99 
41,44 
43,9I 
46,40 
48,90 

17.93I 17,93 
17.931 17,93 
t7,931 I7,95 
17.931 17,98 
t7.931 18,04 
t7.931 18,15 
18.17E 18,32 
]~.~4i 18,55 
�9 18.87[ 18,85 
19,221 19,22 
20.041 !9,66 
20.631 20,16 
21.451 20,72 
22,611 21,34 
23,781 2t,99 
24.941 22,69 
26.56I 23,41 
27.831 24,I8 
29.561 24,94 
30,931 25,73 

T(x4, t) 

17,93 
17,93 
17,94 
17,98 
18,04 
18,15 
18,31 
18,54 
18,84 
19,21 
19,65 
20,15 
20,71 
21,32 
21,8g 
22,68 
23,40 
24,16 
24,93 
25,72 

7, (T) OT/ax = 0 at X ---- ] 

and the initial temperature T(x, 0) = 20~ we obtained for the case n = 0 the values of r 
- -  the change in the temperature as a function of time at the points xl = 0.005, x2 = 0.01, 
x3 = 0.015. Then we solved the inverse problem, in which the functions r with differ- 
ent initial approximations co and %o were used as the initial information. In solving it 
with co = 4000 and ~o = 0.4 the following dependences were obtained: 

c(T) := 4000 + 0 ,15 -10-~  T,  7`(T) =: 0 . 4 - - 0 . 0 0 1 8 8 T .  

In this case the value of the discrepancy function J is equal to 0.93, while its gradient 

{ OJ . OJ.~. OJ aJ } 

aCo Oct 0~o 0~,~ 

contains components equal to {--0.0073; 0.146; 75.98; 1200.44}. The quantity ~J/3E~ has in 

-: (s+1) (s+1) (s+D (s+I) (s+I) 
this case the highest value and in calculating the approximation a = ( co , ci , 7̀ 0 , %1 ) 

in order that the value of the discrepancy J decreases while the functions c(T) =c 0 @ tiT and 

7̀  (T) =J%0 @ %1T would remain positive, the descent parameter ~ is selected to be small enough 
(s+l)  (s+l) 

that co and %0 actually do not change, but they may not correspond to the true values of 

co and Eo. To eliminate this deficiency and taking into account the fact that 3J/3co assumes the 
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smallest value, it is necessary to determine as accurately as possibie the first approximation 
for co. A more accurate value of %o is obtained by solving the inverse problem with constant 
coefficient c(T) = Co and %(T) = !o, after which the problem (10)-(19) is solved once again 
with the more accurate parameters co = 3800 and ~o = 0.3 taking into account the temperature 
dependence of c and %. Choosing, for example, ~ = 0.365, in solving the problem with constant 
thermophysical parameters, we obtain the value%, while the discrepancy functional is equal to 
36.76. We therefore continued the calculations taking into account the temperature dependence 
of c and ~, and the functions 

c(T)=3800+O.362,10-ST, 
~(T)=0,3653+0.012T 

were determined with 21 iterations, the discrepancy J decreased in this case to 0.746. 

The predicted temperatures at the control points with the additional values ~(t) are 

compared in Table i. 

With the help of this algorithm we reconstructed the heat capacity and coefficient of 
thermal conductivity of a copper cylindrical sample. For the auxiliary data we used the ex- 
perimentally determined temperature at several points in the volume of a calorimetric probe 
[3, 7, 8]. The heating occurs on the end face of a probe (Fig. i) inserted into the housing 
of the calorimeter. The heat flow in the probe is one-dimensional, and the cylindrical sur- 
face of the probe is insulated by an air layer. During the experiment the temperature (Fig. 
2) was measured at four points along the cylinder (Fig. I). Since the exact determination of 
the heat flux at the boundary is also a laborious and difficult problem, in: solving the in- 
verse problem of reconstructing the thermophysical parameters at the point x = 0.005 boundary 
conditions of the first kind were given: the temperature at this point was assumed to be 
equal to the experimentally measured temperature; a graph of its variation as a function of 
time is Presented in Fig. 2. On the right boundary (x = 0.04) the condition of zero heat 

flux 

OT 
~------0 

ax 

was given. Initially the temperature of the sample is equal to 17.93~ 

In fixing the initial approximations co = 3400 and %o = 0.4 for the thermophysical char- 

acteristics the following dependences were obtained [9]: 

c (T) = 3400 + 0.79 �9 10 -~ T, 

(T) --  0.362 - -  0.236- 10-r 

The v a l u e  o f  t h e  d i s c r e p a n c y  f u n c t i o n a l  J i n  t h i s  c a s e  i s  e q u a l  t o  9 , 3 7 .  

I n  t h e  s e c o n d  v a r i a n t  o f  t h e  i n i t i a l  a p p r o x i m a t i o n s  co = 3800,  ~o = 0 . 3 5  t h e  r e c o n s t r u c t -  

ed  f u n c t i o n s  c ( T ) ,  X(T) h a v e  t h e  fo rm 

c ( T ) = S S 0 0 - - 0 . 1 . 1 0 - S T ,  

~ ( T ) = 0 . 4 0 3 3 _ 0 A 4 5 4 . 1 0 - ~ T ,  J = 9 . 4 2 2 .  

The p r e d i c t e d  and e x p e r i m e n t a l  v a l u e s  o f  t h e  t e m p e r a t u r e s  a r e  compared  in  T a b l e  2.  

Columns l ,  2 ,  5 ,  and 8 show t h e  e x p e r i m e n t a l l y  m e a s u r e d  v a l u e s  o f  t h e  t e m p e r a t u r e s  a t  
p o i n t s  w i t h  t h e  c o o r d i n a t e s  xo = 0 . 0 0 5 ;  x l  = 0 . 0 1 5 ;  x~ = 0 . 0 2 5 ;  xs  = 0 . 0 3 5 ,  r e s p e c t i v e l y .  
Columns 3, 6 ,  and 9 show t h e  p r e d i c t e d  t e m p e r a t u r e  d i s t r i b u t i o n  w i t h  c (T)  = 3400 + 0 . 7 9 " 1 0  - 9  
T, l ( T )  = 0 . 3 6 2 - 0 . 2 3 6 ' 1 0  - a  T a t  t he  p o i n t s  x l ,  x~ ,  x s ,  co lumns  4,  7 ,  and 10 show t h e  p r e d i c t e d  
temperature distribution with c(T) = 3800-0.1"10 -8 T, ~(T) = 0.4033-0.1454 "I0-~ T for the same 

values of x, respectively. 

If the data for copper are approximated by the expressions c(T) = 3382, %(T) = 0.3984- 
0.0000457 T, then it is evident that the reconstructed characteristics from the solution of 

the inverse problem give a good approximation. 
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NOTATION 

T, temperature; To, initial temperature; ~<x~l~ , spatial coordinate; t(O<~t<<~t 0 , 

time; c(T), volumetric heat capacity; %(T), coelrxclene of thermal conductivity; At, A2, B1, 
B=, coefficients equal to 0 or 1 depending on the form of the boundary condition; ~(O , mea- 
sured values of the temperature at the points xi; J, discrepancy functional; Bi(t) , weight 
functions; and ~j, sensitivity function. 
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